Series PQ1RS/1

Set - 3

प्रश्न-पत्र कोड Q.P. Code

65/1/3

अन्	<u>नु</u> क्रमां व	5		
Ro	ll No.			

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

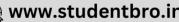
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।
- . प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 23 printed pages.
- Please check that this question paper contains 38 questions.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित **MATHEMATICS**

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 80

Time allowed: 3 hours


Maximum Marks: 80

65/1/3-11

Page 1 of 23

$\sim\sim$

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पिट्टए और उनका सख़्ती से पालन कीजिए:

- (i) इस प्रश्न-पत्र में 38 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **क, ख, ग, घ** एवं **ङ** ।
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय तथा प्रश्न संख्या 19 एवं 20 अभिकथन एवं तर्क आधारित 1 अंक के प्रश्न हैं ।
- (iv) **खण्ड ख** में प्रश्न संख्या **21** से **25** तक अति लघु-उत्तरीय (VSA) प्रकार के **2** अंकों के प्रश्न हैं।
- (v) खण्ड ग में प्रश्न संख्या 26 से 31 तक लघु-उत्तरीय (SA) प्रकार के 3 अंकों के प्रश्न हैं।
- (vi) खण्ड घ में प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तरीय (LA) प्रकार के 5 अंकों के प्रश्न हैं।
- (vii) खण्ड ङ में प्रश्न संख्या 36 से 38 प्रकरण अध्ययन आधारित 4 अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 3 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

इस खण्ड में बहुविकल्पीय प्रश्न हैं, जिनमें प्रत्येक प्रश्न 1 अंक का है।

- 1. $\overline{dy} = at$, $y = \frac{a}{t} = \frac{dy}{dx} = \frac{dy}{dx}$
 - (A) t^2

(B) $-t^2$

(C) $\frac{1}{t^2}$

- (D) $-\frac{1}{t^2}$
- 2. अवकल समीकरण $\frac{dy}{dx} = \frac{1}{\log y}$ का हल है :
 - (A) $\log y = x + c$

(B) $y \log y - y = x + c$

(C) $\log y - y = x + c$

- (D) $y \log y + y = x + c$
- **3.** सदिश, जिसका अंतिम बिंदु A(2, -3, 5) तथा प्रारंभिक बिंदु B(3, -4, 7) है, है :
 - $(A) \qquad \hat{i} \hat{j} + 2\hat{k}$

(B) $\hat{i} + \hat{j} + 2\hat{k}$

 $(C) \quad -\stackrel{\wedge}{i} - \stackrel{\wedge}{j} - 2 \stackrel{\wedge}{k}$

(D) $-\dot{i} + \dot{j} - 2\dot{k}$

65/1/3-11

Page 2 of 23

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper contains 38 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** Sections **A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A**, Questions no. **1** to **18** are multiple choice questions (MCQs) and questions number **19** and **20** are Assertion-Reason based questions of **1** mark each.
- (iv) In **Section B**, Questions no. **21** to **25** are very short answer (VSA) type questions, carrying **2** marks each.
- (v) In **Section C**, Questions no. **26** to **31** are short answer (SA) type questions, carrying **3** marks each.
- (vi) In **Section D**, Questions no. **32** to **35** are long answer (LA) type questions carrying **5** marks each.
- (vii) In **Section E**, Questions no. **36** to **38** are case study based questions carrying **4** marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is **not** allowed.

SECTION A

This section comprises multiple choice questions (MCQs) of 1 mark each.

1. If x = at, $y = \frac{a}{t}$, then $\frac{dy}{dx}$ is:

$$(A)$$
 t^2

(B)
$$-t^2$$

(C)
$$\frac{1}{t^2}$$

$$(D) \quad - \, \frac{1}{t^2}$$

- 2. The solution of the differential equation $\frac{dy}{dx} = \frac{1}{\log y}$ is:
 - (A) $\log y = x + c$

(B) $y \log y - y = x + c$

(C) $\log y - y = x + c$

- (D) $y \log y + y = x + c$
- **3.** The vector with terminal point A (2, -3, 5) and initial point B (3, -4, 7) is:
 - $(A) \qquad \hat{i} \ -\ \hat{j} \ + 2\,\hat{k}$

(B) $\dot{i} + \dot{j} + 2\dot{k}$

(C) $-\hat{i} - \hat{j} - 2\hat{k}$

 $(D) - \mathring{i} + \mathring{j} - 2\mathring{k}$

65/1/3-11

Page 3 of 23

\sim		
_	_	_

- 4. y-अक्ष से बिंदु P(a, b, c) की दूरी है:
 - (A) b

(B) b^2

(C) $\sqrt{a^2 + c^2}$

- (D) $a^2 + c^2$
- **5.** व्यवरोधों $x \ge 0, y \ge 0, x + y \ge 4$ से निर्धारित सुसंगत क्षेत्र के कोनीय बिंदुओं की संख्या है :
 - (A) 0

(B) 1

(C) 2

- (D) 3
- **6.** यदि आव्यूह A और B की कोटियाँ क्रमश: 1×3 और 3×1 हों, तो आव्यूह A'B' की कोटि है :
 - (A) 1×1

(B) 3×1

(C) 1×3

- (D) 3×3
- 7. एक संबंध R को मनुष्यों के समुच्चय के रूप में परिभाषित किया गया है:

$$R = \{(x, y) : x, y \ H \ 5 \ cm छोटा है\}$$

यह संबंध :

- (A) केवल स्वतुल्य है
- (B) स्वतुल्य और संक्रामक है
- (C) सममित और संक्रामक है
- (D) न तो संक्रामक, न ही सममित, न ही स्वतुल्य है
- 8. यदि एक आव्यूह के 36 अवयव हैं, तो इसकी संभव कोटियों की संख्या है:
 - (A) 13

(B) 3

(C) 5

- (D) 9
- - (A) f(x) संतत और अवकलनीय है, सभी $x \in \mathbb{R}$ के लिए
 - (B) f(x) संतत है, सभी $x \in \mathbb{R}$ के लिए
 - (C) f(x) संतत और अवकलनीय है, सभी $x \in \mathbb{R} \{0\}$ के लिए
 - (D) f(x) अनंत बिंदुओं पर असंतत है

65/1/3-11

Page 4 of 23

\sim	\smile	\sim

4. The distance of point P(a, b, c) from y-axis is:

(A)

 $\sqrt{a^2+c^2}$ (C)

(D) $a^2 + c^2$

5. The number of corner points of the feasible region determined by constraints $x \ge 0$, $y \ge 0$, $x + y \ge 4$ is :

(A) 0 (B) 1

(C) 2 (D) 3

6. If matrices A and B are of order 1×3 and 3×1 respectively, then the order of A'B' is:

(A) 1×1 (B) 3×1

(C) 1×3 (D) 3×3

7. A relation R defined on a set of human beings as

 $R = \{(x, y) : x \text{ is } 5 \text{ cm shorter than } y\}$

is:

- (A) reflexive only
- (B) reflexive and transitive
- (C) symmetric and transitive
- neither transitive, nor symmetric, nor reflexive (**D**)

8. If a matrix has 36 elements, the number of possible orders it can have, is:

(A) 13 (B) 3

(C) 5 (D) 9

9. Which of the following function statements is true for the

 $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$?

(A) f(x) is continuous and differentiable $\forall x \in \mathbb{R}$

- (B) f(x) is continuous $\forall x \in \mathbb{R}$
- (C) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$
- (D) f(x) is discontinuous at infinitely many points

65/1/3-11

Page 5 of 23

- माना f(x) अन्तराल [a, b] में एक संतत फलन है और अन्तराल (a, b) में अवकलनीय है । **10.** तो यह फलन f(x) अन्तराल (a, b) में निरंतर वर्धमान होगा, यदि :
 - f'(x) < 0, सभी $x \in (a, b)$ के लिए
 - f'(x) > 0, सभी $x \in (a, b)$ के लिए (B)
 - f'(x) = 0, सभी $x \in (a, b)$ के लिए (C)
 - f(x) > 0, सभी $x \in (a, b)$ के लिए (D)
- यदि $\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$ है, तो $\left(\frac{24}{x} + \frac{24}{y}\right)$ का मान होगा : 11.
 - (A)

(B)

(C)

- (D) 18
- यदि f(x) एक विषम फलन है, तो $\int_{-\infty}^{\infty} f(x) \cos^3 x \, dx$ बराबर है : **12.**
 - (A) $2 \int_{0}^{\pi/2} f(x) \cos^{3} x \, dx$ (B) 0(C) $2 \int_{0}^{\pi/2} f(x) \, dx$ (D) $2 \int_{0}^{\pi/2} \cos^{3} x \, dx$

- माना दो मात्रक सिंदशों \hat{a} और \hat{b} के बीच का कोण θ इस प्रकार है कि $\sin \theta = \frac{3}{5}$ है । तो **13.** $\hat{a} \cdot \hat{b}$ बराबर है :
 - (A) $\pm \frac{3}{5}$

(B) $\pm \frac{3}{4}$

(C) $\pm \frac{4}{5}$

- (D) $\pm \frac{4}{3}$
- अवकल समीकरण $(1-x^2)$ $\frac{\mathrm{d}y}{\mathrm{d}x}$ + xy = ax, -1 < x < 1, का समाकलन गुणक है : **14.**
 - (A) $\frac{1}{x^2 1}$

 $(B) \quad \frac{1}{\sqrt{x^2 - 1}}$

 $(C) \qquad \frac{1}{\mathsf{1}-\mathbf{v}^2}$

(D) $\frac{1}{\sqrt{1-x^2}}$

65/1/3-11

Page 6 of 23

- 10. Let f(x) be a continuous function on [a, b] and differentiable on (a, b). Then, this function f(x) is strictly increasing in (a, b) if
 - (A) $f'(x) < 0, \forall x \in (a, b)$
 - $f'(x) > 0, \, \forall \,\, x \in (a,\,b)$ (B)
 - (C) $f'(x) = 0, \forall x \in (a, b)$
 - (D) $f(x) > 0, \forall x \in (a, b)$
- If $\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: 11.

(B)

(C) 8

- (D) 18
- If f(x) is an odd function, then $\int_{-1}^{\pi/2} f(x) \cos^3 x \, dx \text{ equals :}$ **12.**
 - (A) $2 \int_{0}^{\pi/2} f(x) \cos^{3} x \, dx$ (B) 0(C) $2 \int_{0}^{\pi/2} f(x) \, dx$ (D) $2 \int_{0}^{\pi/2} \cos^{3} x \, dx$

- Let θ be the angle between two unit vectors \hat{a} and \hat{b} such that **13.** $\sin \theta = \frac{3}{5}$. Then, $\hat{a} \cdot \hat{b}$ is equal to :
 - (A) $\pm \frac{3}{5}$

(B) $\pm \frac{3}{4}$

(C) $\pm \frac{4}{5}$

- (D) $\pm \frac{4}{2}$
- The integrating factor of the differential equation $(1 x^2) \frac{dy}{dx} + xy = ax$, **14.**
 - -1 < x < 1, is:
 - $(A) \qquad \frac{1}{v^2 1}$

 $(B) \quad \frac{1}{\sqrt{x^2 - 1}}$

(C) $\frac{1}{1 - \mathbf{v}^2}$

(D) $\frac{1}{\sqrt{1-x^2}}$

 $\sim\sim$

15. यदि किसी एक रेखा के दिक्-कोसाइन $\sqrt{3}$ k, $\sqrt{3}$ k, $\sqrt{3}$ k हैं, तो k का मान है :

 $(A) \pm 1$

(B) $\pm \sqrt{3}$

(C) ± 3

(D) $\pm \frac{1}{3}$

16. एक रैखिक प्रोग्रामन इष्टतमकारी समस्या संबंधित होती है:

- (A) लघुगणकीय फलन से
- (B) रैखिक फलन से

(C) द्विघातीय फलन से

(D) चरघातांकीय फलन से

17. $\text{ 2T}(A \mid B) = P(A' \mid B)$ है, तो निम्न में से कौन-सा कथन सही है ?

(A) P(A) = P(A')

- (B) P(A) = 2 P(B)
- (C) $P(A \cap B) = \frac{1}{2} P(B)$
- (D) $P(A \cap B) = 2 P(B)$

18. $\begin{vmatrix} x+1 & x-1 \\ x^2+x+1 & x^2-x+1 \end{vmatrix}$ बराबर है :

(A) $2x^3$

(B) 2

(C) 0

(D) $2x^3 - 2$

प्रश्न संख्या 19 और 20 अभिकथन एवं तर्क आधारित प्रश्न हैं। दो कथन दिए गए हैं जिनमें एक को अभिकथन (A) तथा दूसरे को तर्क (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

- (A) अभिकथन (A) और तर्क (R) दोनों सही हैं और तर्क (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और तर्क (R) दोनों सही हैं, परन्तु तर्क (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु तर्क (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु तर्क (R) सही है।

65/1/3-11

Page 8 of 23

- If the direction cosines of a line are $\sqrt{3}$ k, $\sqrt{3}$ k, $\sqrt{3}$ k, then the value of k **15.** is:
 - (A) ± 1

(B) $\pm \sqrt{3}$

(C) ± 3

- (D) $\pm \frac{1}{2}$
- **16.** A linear programming problem deals with the optimization of a/an:
 - (A) logarithmic function
- (B) linear function
- (C) quadratic function
- (D) exponential function
- **17.** If $P(A \mid B) = P(A' \mid B)$, then which of the following statements is true?
 - (A) P(A) = P(A')

- (B) P(A) = 2 P(B)
- (C) $P(A \cap B) = \frac{1}{2} P(B)$
- (D) $P(A \cap B) = 2 P(B)$
- 18. $\begin{vmatrix} x+1 & x-1 \\ x^2+x+1 & x^2-x+1 \end{vmatrix}$ is equal to :
 - (A) $2x^3$

(B) 2

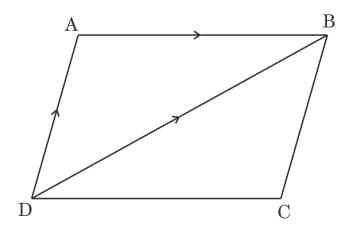
(C) 0 (D) $2x^3 - 2$

Questions number 19 and 20 are Assertion and Reason based questions. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is **not** the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- Assertion (A) is false, but Reason (R) is true. (**D**)

$$\sim\sim$$

19. अभिकथन
$$(A)$$
 : आव्यूह $A=egin{bmatrix} 1&\cos\theta&1\\ -\cos\theta&1&\cos\theta\\ -1&-\cos\theta&1 \end{bmatrix}$, जहाँ $\theta\in[0,\,2\pi]$ के लिए, $|A|\in[2,4].$


तर्क
$$(R)$$
: $\cos \theta \in [-1, 1], \forall \theta \in [0, 2\pi].$

- **20.** अभिकथन (A) : अंतरिक्ष में एक रेखा कभी भी एक साथ x, y और z अक्षों के लंबवत नहीं हो सकती है।
 - तर्क (R) : किसी रेखा द्वारा x, y और z अक्षों की धनात्मक दिशाओं के साथ क्रमश: α , β और γ के कोण बनाने पर $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$ है ।

खण्ड ख

इस खण्ड में अति लघु-उत्तरीय (VSA) प्रकार के प्रश्न हैं, जिनमें प्रत्येक के 2 अंक हैं।

21. दी गई आकृति में, ABCD एक समांतर चतुर्भुज है । यदि $\overrightarrow{AB} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ तथा $\overrightarrow{DB} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ हैं, तो \overrightarrow{AD} ज्ञात कीजिए और इसके प्रयोग से समांतर चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए ।

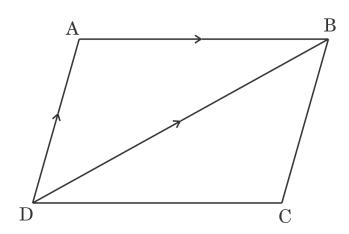
65/1/3-11

Page 10 of 23

$$\sim\sim$$

19. Assertion (A): For matrix
$$A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{bmatrix}$$
, where $\theta \in [0, 2\pi]$, $|A| \in [2, 4]$.

Reason (R): $\cos \theta \in [-1, 1], \forall \theta \in [0, 2\pi].$


20. Assertion (A): A line in space cannot be drawn perpendicular to x, y and z axes simultaneously.

Reason (R): For any line making angles, α , β , γ with the positive directions of x, y and z axes respectively, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

SECTION B

This section comprises very short answer (VSA) type questions of 2 marks each.

21. In the given figure, ABCD is a parallelogram. If $\overrightarrow{AB} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{DB} = 3\hat{i} - 6\hat{j} + 2\hat{k}$, then find \overrightarrow{AD} and hence find the area of parallelogram ABCD.

65/1/3-11

Page 11 of 23

 $\sim\sim$

22. (क) फलन f(x) = [x], जहाँ [•] सबसे बड़े पूर्णांक फलन को दर्शाता है, की x = -3 पर अवकलनीयता की जाँच कीजिए ।

अथवा

(ख) यदि
$$x^{1/3} + y^{1/3} = 1$$
 है, तो बिंदु $\left(\frac{1}{8}, \frac{1}{8}\right)$ पर $\frac{\mathrm{d}y}{\mathrm{d}x}$ ज्ञात कीजिए ।

- **23.** फलन $f(x) = 4x^2 + \frac{1}{x} (x \neq 0)$ के लिए स्थानीय उच्चतम मान और स्थानीय निम्नतम मान (यदि कोई हो) ज्ञात कीजिए।
- **24.** (क) ज्ञात कीजिए:

$$\int x \sqrt{1+2x} dx$$

अथवा

(ख) मान ज्ञात कीजिए:

$$\int_0^{\frac{\pi^2}{4}} \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$

25. यदि दो शून्येतर सदिश \overrightarrow{a} और \overrightarrow{b} इस प्रकार हैं कि $(\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{a}$ और $(2\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{b}$, तो सिद्ध कीजिए कि $|\overrightarrow{b}| = \sqrt{2} |\overrightarrow{a}|$.

खण्ड ग

इस खण्ड में लघु-उत्तरीय (SA) प्रकार के प्रश्न हैं, जिनमें प्रत्येक के 3 अंक हैं।

26. निम्न रैखिक प्रोग्रामन समस्या को आलेखीय विधि से हल कीजिए : निम्न व्यवरोधों के अंतर्गत

$$x + 2y \le 120$$

$$x + y \ge 60$$

$$x-2y \ge 0$$

$$x, y \ge 0$$

z = 5x - 2y का न्यूनतमीकरण कीजिए।

65/1/3-11

Page 12 of 23

22. (a) Check the differentiability of function f(x) = [x] at x = -3, where [•] denotes greatest integer function.

OR

- (b) If $x^{1/3} + y^{1/3} = 1$, find $\frac{dy}{dx}$ at the point $\left(\frac{1}{8}, \frac{1}{8}\right)$.
- **23.** Find local maximum value and local minimum value (whichever exists) for the function $f(x) = 4x^2 + \frac{1}{x} (x \neq 0)$.
- **24.** (a) Find:

$$\int x \sqrt{1+2x} dx$$

OR

(b) Evaluate:

$$\int_0^{\frac{\pi^2}{4}} \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$

25. If \overrightarrow{a} and \overrightarrow{b} are two non-zero vectors such that $(\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{a}$ and $(2\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{b}$, then prove that $|\overrightarrow{b}| = \sqrt{2} |\overrightarrow{a}|$.

SECTION C

This section comprises short answer (SA) type questions of 3 marks each.

26. Solve the following linear programming problem graphically:

Minimise z = 5x - 2y

subject to the constraints

$$x + 2y \le 120$$

$$x + y \ge 60$$

$$x - 2y \ge 0$$

$$x, y \ge 0$$

- **27.** E और F दो स्वतंत्र घटनाएँ ऐसी हैं जिनके लिए $P(\overline{E}) = 0.6$ तथा $P(E \cup F) = 0.6$ है। P(F) और $P(\overline{E} \cup \overline{F})$ ज्ञात कीजिए।
- **28.** (क) समुच्चय $A = \{1, 2, 3, 4, 5\}$ में एक संबंध $R = \{(x, y) : |x^2 y^2| < 8\}$ द्वारा परिभाषित है । जाँच कीजिए कि क्या यह संबंध R स्वतुल्य, सममित और संक्रामक है ।

अथवा

- (ख) फलन $f:R\to R$, f(x)=ax+b द्वारा इस प्रकार परिभाषित है कि f(1)=1 और f(2)=3. फलन f(x) ज्ञात कीजिए । अतः, जाँच कीजिए कि क्या फलन f(x) एकैकी और आच्छादक है या नहीं ।
- **29.** (क) यदि $\sqrt{1-x^2} + \sqrt{1-y^2} = a \ (x-y)$ है, तो सिद्ध कीजिए कि $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}} \ .$

अथवा

- (ख) यदि $y = (\tan x)^x$ है, तो $\frac{dy}{dx}$ ज्ञात कीजिए ।
- **30.** (क) ज्ञात कीजिए:

$$\int \frac{x^2}{(x^2+4)(x^2+9)} \, dx$$

अथवा

(ख) मान ज्ञात कीजिए:

$$\int_{1}^{3} (|x-1|+|x-2|+|x-3|) dx$$

31. निम्न अवकल समीकरण को हल कीजिए:

$$(\tan^{-1} y - x) dy = (1 + y^2) dx$$

- **27.** E and F are two independent events such that $P(\overline{E})=0.6$ and $P(E\cup F)=0.6$. Find P(F) and $P(\overline{E}\cup \overline{F})$.
- **28.** (a) A relation R on set A = $\{1, 2, 3, 4, 5\}$ is defined as R = $\{(x, y) : |x^2 y^2| < 8\}$. Check whether the relation R is reflexive, symmetric and transitive.

OR

- (b) A function f is defined from $R \to R$ as f(x) = ax + b, such that f(1) = 1 and f(2) = 3. Find function f(x). Hence, check whether function f(x) is one-one and onto or not.
- **29.** (a) If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.

OR

- (b) If $y = (\tan x)^x$, then find $\frac{dy}{dx}$.
- **30.** (a) Find:

$$\int \frac{x^2}{(x^2+4)(x^2+9)} dx$$

OR.

(b) Evaluate:

$$\int_{1}^{3} (|x-1|+|x-2|+|x-3|) dx$$

31. Solve the following differential equation :

$$(\tan^{-1} y - x) dy = (1 + y^2) dx$$

65/1/3-11

Page 15 of 23

$\sim \sim$

खण्ड घ

इस खण्ड में दीर्घ-उत्तरीय (LA) प्रकार के प्रश्न हैं, जिनमें प्रत्येक के 5 अंक हैं।

- 32. रेखा l_2 का समीकरण ज्ञात कीजिए जो रेखा $l: \frac{\mathbf{x}}{1} = \frac{\mathbf{y}-1}{2} = \frac{\mathbf{z}-2}{3}$ के संबंध में रेखा l_1 की दर्पण छिव है, यह दिया गया है कि रेखा l_1 बिंदु $\mathbf{P}(1,6,3)$ से होकर गुज़रती है और रेखा l के समांतर है।
- 33. (क) यदि $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}$ है, तो A^{-1} ज्ञात कीजिए और इसके प्रयोग से, निम्न

समीकरण निकाय को हल कीजिए:

$$x - 2y = 10$$
, $2x - y - z = 8$, $-2y + z = 7$

अथवा

(ख) यदि
$$A = \begin{bmatrix} -1 & a & 2 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix}$$
 तथा $A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix}$ है, तो $(a+x)-(b+y)$ का मान ज्ञात कीजिए ।

34. (क) ज्ञात कीजिए:

$$\int \frac{(3\cos x - 2)\sin x}{5 - \sin^2 x - 4\cos x} \, \mathrm{d}x$$

अथवा

(ख) मान ज्ञात कीजिए:

$$\int_{-2}^{2} \frac{x^3 + |x| + 1}{x^2 + 4|x| + 4} dx$$

35. समाकलन विधि के प्रयोग से, दीर्घवृत्त $\frac{x^2}{16} + \frac{y^2}{4} = 1$ के उस क्षेत्र का, जो रेखाओं x = -2 और x = 2 के बीच है, क्षेत्रफल ज्ञात कीजिए।

Page 16 of 23

SECTION D

This section comprises long answer type questions (LA) of 5 marks each.

- Find the equation of a line l_2 which is the mirror image of the line l_1 with **32.** respect to line $l: \frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$, given that line l_1 passes through the point P(1, 6, 3) and parallel to line l.
- (a) If $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}$, find A^{-1} and use it to solve the following 33.

$$x - 2y = 10$$
, $2x - y - z = 8$, $-2y + z = 7$

(b) If
$$A = \begin{bmatrix} -1 & a & 2 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix}$,

find the value of (a + x) - (b + y).

34. (a) Find:

$$\int \frac{(3\cos x - 2)\sin x}{5 - \sin^2 x - 4\cos x} \, \mathrm{d}x$$

OR

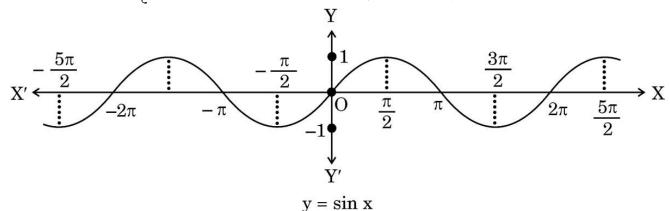
(b) Evaluate:

$$\int_{-2}^{2} \frac{x^3 + |x| + 1}{x^2 + 4|x| + 4} dx$$

Using integration, find the area of the ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$, included **35.** between the lines x = -2 and x = 2.

65/1/3-11

Page 17 of 23



खण्ड ङ

इस खण्ड में 3 प्रकरण अध्ययन आधारित प्रश्न हैं, जिनमें प्रत्येक के 4 अंक हैं।

प्रकरण अध्ययन - 1

36. यदि फलन $f: X \to Y$ इस प्रकार परिभाषित है कि f(x) = y एकैकी तथा आच्छादक हो, तो हम एक अद्वितीय फलन $g: Y \to X$ इस प्रकार परिभाषित कर सकते हैं कि g(y) = x, जहाँ $x \in X$ तथा y = f(x), $y \in Y$ है । फलन g को फलन f का प्रतिलोम कहा जाता है । sine फलन का प्रांत R और फलन sine : $R \to R$ न तो एकैकी है और न ही आच्छादक है । निम्न आकृति में sine फलन का आलेख दिखाया गया है ।

मान लीजिए sine फलन समुच्चय A से [-1,1] इस प्रकार परिभाषित है कि sine फलन के प्रतिलोम का अस्तित्व है, यानि $\sin^{-1}x:[-1,1]\to A$ पर परिभाषित है ।

उपर्युक्त सूचना के आधार पर, निम्न प्रश्नों के उत्तर दीजिए:

- (i) यदि A मुख्य मान शाखा के अलावा अन्य अंतराल है, तो ऐसे एक अंतराल का उदाहरण दीजिए।
- (ii) यदि $\sin^{-1}(x)$ को [-1,1] से इसकी मुख्य मान शाखा में परिभाषित किया गया हो, $\vec{\sin}^{-1}\left(-\frac{1}{2}\right) \sin^{-1}(1)$ का मान ज्ञात कीजिए।
- (iii) (a) [-1,1] से मुख्य मान शाखा तक के लिए $\sin^{-1}x$ का आलेख बनाइए । 2

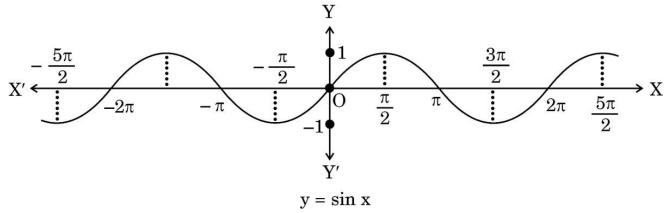
अथवा

(iii) (ख) $f(x) = 2 \sin^{-1} (1 - x)$ का प्रांत और परिसर ज्ञात कीजिए।

65/1/3-11 Page 18 of 23

1

1


SECTION E

This section comprises 3 case study based questions of 4 marks each.

Case Study - 1

36. If a function $f: X \to Y$ defined as f(x) = y is one-one and onto, then we can define a unique function $g: Y \to X$ such that g(y) = x, where $x \in X$ and $y = f(x), y \in Y$. Function g is called the inverse of function f.

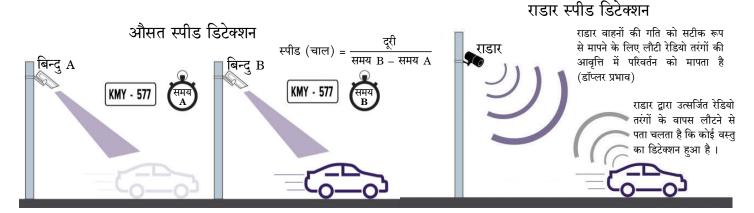
The domain of sine function is R and function sine : $R \to R$ is neither one-one nor onto. The following graph shows the sine function.

Let sine function be defined from set A to [-1, 1] such that inverse of sine function exists, i.e., $\sin^{-1} x$ is defined from [-1, 1] to A.

On the basis of the above information, answer the following questions:

- (i) If A is the interval other than principal value branch, give an example of one such interval.
- If $\sin^{-1}(x)$ is defined from [-1, 1] to its principal value branch, find (ii) the value of $\sin^{-1}\left(-\frac{1}{2}\right) - \sin^{-1}\left(1\right)$. 1
- Draw the graph of $\sin^{-1} x$ from [-1, 1] to its principal value (iii) (a) branch.

OR


Find the domain and range of $f(x) = 2 \sin^{-1} (1 - x)$. 2 (iii)

65/1/3-11 Page 19 of 23 P.T.O.

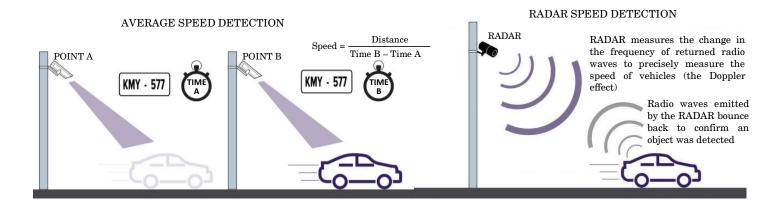
1

37. ट्रैफिक पुलिस ने शहर में विभिन्न स्थानों पर ओवर स्पीड उल्लंघन डिटेक्शन (OSVD) प्रणाली स्थापित की है। ये कैमरे 300 मीटर की दूरी से तेज गित से चलने वाले वाहन की फोटो ले सकते हैं और अँधेरे में भी काम कर सकते हैं।

एक खंभे पर 5 मीटर की उँचाई पर एक कैमरा स्थापित किया गया है। यह 20 मीटर / सेकंड की गित से खंभे से दूर जा रही एक कार का पता लगाता है। खंभे के पाद से x मीटर दूरी पर किसी भी बिंदु पर, कार C से स्पीड कैमरे का उन्नयन कोण θ है। उपर्युक्त सूचना के आधार पर, निम्न प्रश्नों के उत्तर दीजिए:

- (i) खंभे पर स्थापित किए गए कैमरे की ऊँचाई और x के रूप में θ को व्यक्त कीजिए । 1
- (ii) $\frac{d\theta}{dx}$ ज्ञात कीजिए ।
- (iii) (क) जब कार खंभे से 50 मीटर दूर हो, तो उस क्षण पर समय के सापेक्ष उन्नयन कोण में परिवर्तन की दर ज्ञात कीजिए।

अथवा


(iii) (ख) यदि खंभे के पाद से 50 मीटर की दूरी पर दूसरी कार के समय के सापेक्ष उन्नयन कोण में परिवर्तन की दर $\frac{3}{101}$ रेडियन/सेकंड है, तो कार की गित ज्ञात कीजिए।

65/1/3-11

Page 20 of 23

2

37. The traffic police has installed Over Speed Violation Detection (OSVD) system at various locations in a city. These cameras can capture a speeding vehicle from a distance of 300 m and even function in the dark.

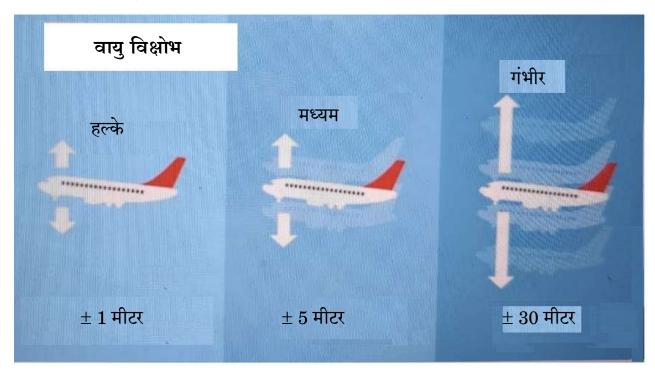
A camera is installed on a pole at the height of 5 m. It detects a car travelling away from the pole at the speed of 20 m/s. At any point, x m away from the base of the pole, the angle of elevation of the speed camera from the car C is θ .

On the basis of the above information, answer the following questions:

- (i) Express θ in terms of height of the camera installed on the pole and x.
- (ii) Find $\frac{d\theta}{dx}$.
- (iii) (a) Find the rate of change of angle of elevation with respect to time at an instant when the car is 50 m away from the pole. 2

OR

(iii) (b) If the rate of change of angle of elevation with respect to time of another car at a distance of 50 m from the base of the pole is $\frac{3}{101}$ rad/s, then find the speed of the car.


65/1/3-11 Page 21 of 23 P.T.O.

1

प्रकरण अध्ययन - 3

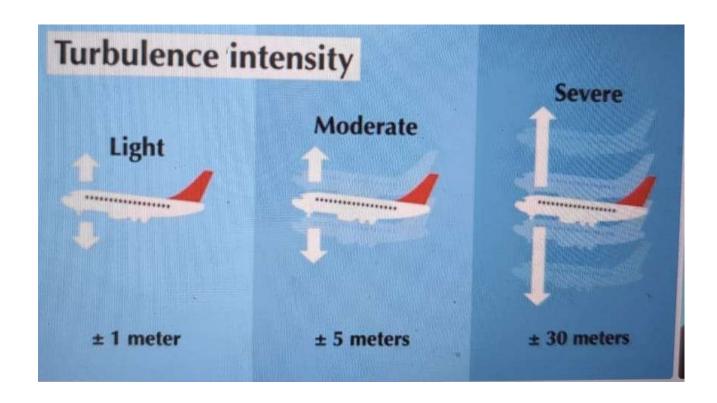
हाल के शोध के अनुसार, जलवायु परिवर्तन के कारण दुनिया भर के विभिन्न क्षेत्रों में वायु 38. विक्षोभ बढ़ता है । वायु विक्षोभ उड़ान को मुश्किल बना देता है और अक्सर उड़ान में देरी करता है।

मान लीजिए कि एक हवाई जहाज समान प्रायिकता के साथ गंभीर विक्षोभ, मध्यम विक्षोभ या हल्के विक्षोभ का अनुभव करता है । इसके अलावा, गंभीर विक्षोभ, मध्यम विक्षोभ और हल्के विक्षोभ के कारण हवाई जहाज के गंतव्य पर देर से पहुँचने की प्रायिकता क्रमश: 55%, 37% और 17% है।

उपर्युक्त सूचना के आधार पर, निम्न प्रश्नों के उत्तर दीजिए :

- हवाई जहाज के गंतव्य पर देर से पहुँचने की प्रायिकता ज्ञात कीजिए। (i)
- यदि हवाई जहाज अपने गंतव्य पर देर से पहुँचता है, तो प्रायिकता ज्ञात कीजिए कि (ii) ऐसा मध्यम विक्षोभ के कारण हुआ है।

65/1/3-11


Page 22 of 23

2

Case Study - 3

38. According to recent research, air turbulence has increased in various regions around the world due to climate change. Turbulence makes flights bumpy and often delays the flights.

airplane observes severe turbulence, moderate Assume that, an turbulence or light turbulence with equal probabilities. Further, the chance of an airplane reaching late to the destination are 55%, 37% and 17% due to severe, moderate and light turbulence respectively.

On the basis of the above information, answer the following questions:

- (i) Find the probability that an airplane reached its destination late.
- (ii) If the airplane reached its destination late, find the probability that it was due to moderate turbulence.

65/1/3-11

Page 23 of 23

2

Marking Scheme

Strictly Confidential

(For Internal and Restricted use only)

Senior School Certificate Examination, 2024

MATHEMATICS PAPER CODE - 65/1/3

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession.
	To avoid mistakes, it is requested that before starting evaluation, you must read and
	understand the spot evaluation guidelines carefully.

- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them.
- 4 The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ($\sqrt{\ }$) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 7 If a question has parts, please award marks on the right-hand side for each part. Marks

65 /1/3 1 P.T.O.

	awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
9	In Q1-Q20, if a candidate attempts the question more than once (without canceling the previous attempt), marks shall be awarded for the first attempt only and the other answer scored out `with a note "Extra Question".
10	In Q21-Q38, if a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
11	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
12	A full scale of marks(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
13	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
14	Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
15	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
16	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

65 /1/3 2 P.T.O.

17	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
18	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
19	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

65 /1/3 3 P.T.O.

MARKING SCHEME

MATHEMATICS (Subject Code-041)

(PAPER CODE: 65/1/3)

Q.No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
	(Question nos. 1 to 18 are Multiple choice Questions carrying 1 mark each)	,
1.	If $x = at$, $y = \frac{a}{t}$, then $\frac{dy}{dx}$ is:	
	(A) t^2 (B) $-t^2$	
	(A) t^2 (B) $-t^2$ (C) $\frac{1}{t^2}$ (D) $-\frac{1}{t^2}$	
	, 1	
Ans	(D) -1	
Alls	(D) $\frac{-1}{t^2}$	1
2.	The solution of the differential equation $\frac{dy}{dx} = \frac{1}{\log y}$ is :	
	(A) $\log y = x + c$ (B) $y \log y - y = x + c$	
	(C) $\log y - y = x + c$ (D) $y \log y + y = x + c$	
Ans	(B) $y \log y - y = x + c$	1
	The vector with terminal point A (2, -3, 5) and initial point B (3, -4, 7)	
3.	is:	
	(A) $\hat{i} - \hat{j} + 2\hat{k}$ (B) $\hat{i} + \hat{j} + 2\hat{k}$	
	(C) $-\hat{i} - \hat{j} - 2\hat{k}$ (D) $-\hat{i} + \hat{j} - 2\hat{k}$	
Ans	$(D) - \hat{\imath} + \hat{\jmath} - 2 \widehat{k}$	1
4.	The distance of point P(a, b, c) from y-axis is:	
	(A) b (B) b ²	
	(C) $\sqrt{a^2 + c^2}$ (D) $a^2 + c^2$	
Ans	$(C)\sqrt{a^2+c^2}$	1
	The number of corner points of the feasible region determined by	
5.	constraints $x \ge 0$, $y \ge 0$, $x + y \ge 4$ is :	
	(A) 0 (B) 1	
	(C) 2 (D) 3	
Ans	(C) 2	1

65 /1/3

4

7.			-
(A) 1×1 (B) 3×1 (C) 1×3 (D) 3×3 Ans (D) 3×3 A relation R defined on a set of human beings as $R = \{(x,y): x \text{ is } 5 \text{ cm shorter than } y\}$ is: (A) reflexive only (B) reflexive and transitive (C) symmetric and transitive (D) neither transitive, nor symmetric, nor reflexive Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ (D) $f(x)$ is discontinuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ (D) $f(x)$ is discontinuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ (D) $f(x)$ is discontinuous function on $f(x)$ is strictly increasing in $f(x)$ if $f(x) = 0, \forall x \in \{a, b\}$ (C) $f'(x) = 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (D) $f(x) > 0, \forall x \in \{a, b\}$ (E) $f'(x) = 0, \forall x \in \{a, b\}$ (E)			
Ans (D) 3×3 A relation R defined on a set of human beings as R = {(x, y) : x is 5 cm shorter than y} is: (A) reflexive only (B) reflexive and transitive (C) symmetric and transitive (D) neither transitive, nor symmetric, nor reflexive Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ (D) $f(x)$ is discontinuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ (D) $f(x)$ is discontinuous function on $f(x)$ is discontinuous and differentiable $f(x)$ if $f(x) = \{0\}$ is $f(x) = \{0\}$ (C) $f(x)$ is continuous function on $f(x)$ is strictly increasing in $f(x)$ if $f(x) = \{0\}$ is $f(x) = \{0\}$ in $f(x) = \{0\}$ in $f(x) = \{0\}$ is $f(x) = \{0\}$ in $f(x) = \{0\}$ in $f(x) = \{0\}$ in $f(x) = \{0\}$ in $f(x) = \{0\}$ is $f(x) = \{0\}$ in $f(x) = \{0\}$ is $f(x) = \{0\}$ in $f(x) = \{$	6.	order of A'B' is :	
Ans (D) 3 x 3 A relation R defined on a set of human beings as R = {(x, y) : x is 5 cm shorter than y} is: (A) reflexive only (B) reflexive and transitive (C) symmetric and transitive (D) neither transitive, nor symmetric, nor reflexive Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 9. Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ 10. Let $f(x)$ be a continuous function on $f(x)$ is $f(x)$ and $f(x)$ is $f(x)$ is $f(x)$ o, $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ in $f(x)$ is $f(x)$ in $f(x)$ in $f(x)$ in $f(x)$ in $f(x)$ in $f(x)$ in $f(x)$ is $f(x)$ in $f(x)$ i		(A) 1 × 1 (B) 3 × 1	
7. A relation R defined on a set of human beings as		(C) 1 × 3 (D) 3 × 3	
7.	Ans	(D) 3 x 3	1
is: (A) reflexive only (B) reflexive and transitive (C) symmetric and transitive (D) neither transitive, nor symmetric, nor reflexive Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) fix) is continuous and differentiable $\forall x \in \mathbb{R}$ (B) f(x) is continuous $\forall x \in \mathbb{R}$ (C) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) f(x) is discontinuous at infinitely many points Ans (C) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) f(x) is discontinuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) f(x) is continuous function on [a, b] and differentiable on (a, b). Then, this function f(x) is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f''(x) > 0, \forall x \in (a, b)$ (B) $f''(x) > 0, \forall x \in (a, b)$ (C) $f''(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (B) $f''(x) > 0, \forall x \in (a, b)$ (C) $f''(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x \in (a, b)$ (E) $f(x) = 0, \forall x$		A relation R defined on a set of human beings as	
(A) reflexive only (B) reflexive and transitive (C) symmetric and transitive (D) neither transitive, nor symmetric, nor reflexive Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) fix is continuous and differentiable $\forall x \in \mathbb{R}$ (B) f(x) is continuous and differentiable $\forall x \in \mathbb{R}$ (C) f(x) is continuous at infinitely many points Ans (C) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) f(x) is discontinuous at infinitely many points Ans (C) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) f(x) is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x) = 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f'(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f'(x) > 0, \forall x \in$	7.	$R = \{(x, y) : x \text{ is } 5 \text{ cm shorter than } y\}$	
(B) reflexive and transitive (C) symmetric and transitive (D) neither transitive, nor symmetric, nor reflexive Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function f(x) =		is:	
(C) symmetric and transitive (D) neither transitive, nor symmetric, nor reflexive (D) 9		(A) reflexive only	
(D) neither transitive, nor symmetric, nor reflexive Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$? (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ 10. Let $f(x)$ be a continuous function on $f(x)$ is strictly increasing in $f(x)$ if $f(x) = 0$,		(B) reflexive and transitive	
Ans (D) Neither transitive, nor symmetric, nor reflexive If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is strictly increasing in $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ is $f(x)$ in $f(x)$ is $f(x)$ in f		(C) symmetric and transitive	
If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ x^2 + 3, & x \neq 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $(24 + 24 / y)$ is: (A) 7 (B) 6		(D) neither transitive, nor symmetric, nor reflexive	
If a matrix has 36 elements, the number of possible orders it can have, is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 9. Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 2 + 3, & x \neq 0 \end{cases}$ (A) f(x) is continuous and differentiable $\forall x \in \mathbb{R}$ (B) f(x) is continuous and differentiable $\forall x \in \mathbb{R}$ (C) f(x) is continuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ (D) f(x) is discontinuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ (C) f(x) is continuous and differentiable $\forall x \in \mathbb{R} = \{0\}$ 10. Let f(x) be a continuous function on [a, b] and differentiable on (a, b). Then, this function f(x) is strictly increasing in (a, b) if (A) f'(x) < 0, $\forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $(\frac{24}{x} + \frac{24}{y})$ is: (A) 7 (B) 6	Ans	(D) Neither transitive, nor symmetric, nor reflexive	1
8. is: (A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 9. Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f'(x) > 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f'(x) > 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (E) $f'(x) > 0, \forall x \in (a, b)$			1
(A) 13 (B) 3 (C) 5 (D) 9 Ans (D) 9 9. Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6	8.	_	
Ans (D) 9 9. Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $(x) = 2$ is: (A) 7 (B) 6		(A) 13 (B) 3	
9. Which of the following statements is true for the function $f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6		(C) 5 (D) 9	
$f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ $(A) f(x) \text{ is continuous and differentiable } \forall x \in \mathbb{R}$ $(B) f(x) \text{ is continuous and differentiable } \forall x \in \mathbb{R}$ $(C) f(x) \text{ is continuous and differentiable } \forall x \in \mathbb{R} - \{0\}$ $(D) f(x) \text{ is discontinuous at infinitely many points}$ $Ans (C) f(x) \text{ is continuous and differentiable } \forall x \in R - \{0\}$ $10. \text{Let } f(x) \text{ be a continuous function on } [a, b] \text{ and differentiable on } (a, b).$ $Then, \text{ this function } f(x) \text{ is strictly increasing in } (a, b) \text{ if }$ $(A) f'(x) < 0, \forall x \in (a, b)$ $(B) f'(x) > 0, \forall x \in (a, b)$ $(C) f'(x) = 0, \forall x \in (a, b)$ $(D) f(x) > 0, \forall x \in (a, b)$ $(B) f'(x) > 0, \forall x \in (a, b)$ $Then, \text{ this function } f(x) \text{ is strictly increasing in } (a, b) \text{ if } (a, b) i$	Ans	(D) 9	1
$f(x) = \begin{cases} x^2 + 3, & x \neq 0 \\ 1, & x = 0 \end{cases}$ $(A) f(x) \text{ is continuous and differentiable } \forall x \in \mathbb{R}$ $(B) f(x) \text{ is continuous and differentiable } \forall x \in \mathbb{R}$ $(C) f(x) \text{ is continuous and differentiable } \forall x \in \mathbb{R} - \{0\}$ $(D) f(x) \text{ is discontinuous at infinitely many points}$ $Ans (C) f(x) \text{ is continuous and differentiable } \forall x \in R - \{0\}$ $10. \text{Let } f(x) \text{ be a continuous function on } [a, b] \text{ and differentiable on } (a, b).$ $Then, \text{ this function } f(x) \text{ is strictly increasing in } (a, b) \text{ if }$ $(A) f'(x) < 0, \forall x \in (a, b)$ $(B) f'(x) > 0, \forall x \in (a, b)$ $(C) f'(x) = 0, \forall x \in (a, b)$ $(D) f(x) > 0, \forall x \in (a, b)$ $(B) f'(x) > 0, \forall x \in (a, b)$ $Then, \text{ this function } f(x) \text{ is strictly increasing in } (a, b) \text{ if } (a, b) i$	9	Which of the following statements is true for the function	
(A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$ (B) $f(x)$ is continuous $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in R - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $(x) = 2$ is: (A) 7 (B) 6	,		
(B) $f(x)$ is continuous $\forall x \in \mathbb{R}$ (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in R - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6		$\mathbf{I}(\mathbf{X}) = \left\{ \begin{array}{c} \mathbf{I} \\ 1 \\ \end{array} \right. \mathbf{X} = 0 $	
(C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ (D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R} - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans $(B) f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of (a, b) is: (A) 7 (B) 6		(A) $f(x)$ is continuous and differentiable $\forall x \in \mathbb{R}$	
(D) $f(x)$ is discontinuous at infinitely many points Ans (C) $f(x)$ is continuous and differentiable $\forall x \in R - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6		(B) $f(x)$ is continuous $\forall x \in \mathbb{R}$	
Ans (C) $f(x)$ is continuous and differentiable $\forall x \in R - \{0\}$ 10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6		(C) $f(x) \text{ is continuous and differentiable } \forall \ x \in \mathbb{R} - \{0\}$	
10. Let $f(x)$ be a continuous function on $[a, b]$ and differentiable on (a, b) . Then, this function $f(x)$ is strictly increasing in (a, b) if (A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans $(B) f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6	•		
Then, this function $f(x)$ is strictly increasing in (a, b) if $(A) f'(x) < 0, \forall x \in (a, b)$ $(B) f'(x) > 0, \forall x \in (a, b)$ $(C) f'(x) = 0, \forall x \in (a, b)$ $(D) f(x) > 0, \forall x \in (a, b)$ Ans $(B) f'(x) > 0, \forall x \in (a, b)$ $If \begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}, \text{ then the value of } \left(\frac{24}{x} + \frac{24}{y}\right) \text{ is :}$ $(A) 7 \qquad (B) 6$	Ans	(C) $f(x)$ is continuous and differentiable $\forall x \in R - \{0\}$	1
(A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans $(B) f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6	10.		
(B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans (B) $f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6			
(C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ Ans $(B) f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is : (A) 7 (B) 6			
(D) $f(x) > 0$, $\forall x \in (a, b)$ Ans $(B) f'(x) > 0$, $\forall x \in (a, b)$ 11. If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6			
Ans $(B) f'(x) > 0, \forall x \in (a, b)$ 11. If $\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $(B) f'(x) > 0$, the value of			
11. If $\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6			
(A) 7 (B) 6	Ans		1
	11.	If $\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is:	
(C) 8 (D) 18		(A) 7 (B) 6	
Ans (D) 18	Ans	(D) 18	1

5

12.	If $f(x)$ is an odd function, then $\int\limits_{-\pi/2}^{\pi/2} f(x) \cos^3 x dx \text{ equals :}$	
	(A) $2 \int_{0}^{\pi/2} f(x) \cos^{3} x dx$ (B) 0	
	(C) $2\int_{0}^{\pi/2} f(x) dx$ (D) $2\int_{0}^{\pi/2} \cos^{8} x dx$	
Ans	(B) 0	1
1225	Let θ be the angle between two unit vectors \hat{a} and \hat{b} such that $\sin \theta = \frac{3}{5}$	_
13.	Then, $\hat{a} \cdot \hat{b}$ is equal to :	
	$(A) \pm \frac{3}{5} (B) \pm \frac{3}{4}$	
	(C) $\pm \frac{4}{5}$ (D) $\pm \frac{4}{3}$	
Ans	$(C) \pm \frac{4}{5}$	1
	The integrating factor of the differential equation $(1 - x^2) \frac{dy}{dx} + xy = ax$,	
14.	The integrating factor of the differential equation $(1-x)$ $\frac{1}{dx}$ $\frac{1}{dx}$ $\frac{1}{dx}$ $\frac{1}{dx}$	
	(A) $\frac{1}{x^2 - 1}$ (B) $\frac{1}{\sqrt{x^2 - 1}}$	
	(C) $\frac{1}{1-x^2}$ (D) $\frac{1}{\sqrt{1-x^2}}$	
Ans	$(D)\frac{1}{\sqrt{1-x^2}}$	1
	If the direction cosines of a line are $\sqrt{3}$ k, $\sqrt{3}$ k, then the value of k	
15.	is:	
	(A) ± 1 (B) $\pm \sqrt{3}$	
	(C) ± 3 (D) $\pm \frac{1}{3}$	
Ans	(D) $\pm \frac{1}{3}$	1
	A linear programming problem deals with the optimization of a/an	
16.	(A) logarithmic function (B) linear function	
	(C) quadratic function (D) exponential function	

6

Ans	(B) linear function	1
	If $P(A \mid B) = P(A' \mid B)$, then which of the following statements is true?	
17.	(A) $P(A) = P(A')$ (B) $P(A) = 2 P(B)$	
	(C) $P(A \cap B) = \frac{1}{2} P(B)$ (D) $P(A \cap B) = 2 P(B)$	
Ans	$(C) P(A \cap B) = \frac{1}{2} P(B)$	1
18.	$\begin{vmatrix} x+1 & x-1 \\ x^2+x+1 & x^2-x+1 \end{vmatrix}$ is equal to:	
	(A) $2x^3$ (B) 2	
	(C) 0 (D) $2x^3 - 2$	
Ans	(B) 2	1
	(Question Nos. 19 & 20 are Assertion-Reason based questions of 1 mark each)	
19.	Assertion (A): For matrix $A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{bmatrix}$, where $\theta \in [0, 2\pi]$,	
	$ A \in [2, 4].$	
	Reason (R): $\cos \theta \in [-1, 1], \forall \theta \in [0, 2\pi].$	
Ans	(A) Both Assertion (A) and Reason (R) are true and the Reason (R) is the correct explanation of Assertion (A).	1
20.	Assertion (A): A line in space cannot be drawn perpendicular to x, y and z axes simultaneously.	
	Reason (R): For any line making angles, α , β , γ with the positive directions of x, y and z axes respectively, $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$	
Ans	(A) Both Assertion (A) and Reason (R) are true and the Reason (R) is the correct explanation of Assertion (A).	1

7

	$\Gamma_{X,Y}$, $\Gamma_{X,Y}$, $\Gamma_{X,Y}$, $\Gamma_{X,Y}$, $\Gamma_{X,Y}$	
21.	In the given figure, ABCD is a parallelogram. If $\overrightarrow{AB} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{DB} = 3\hat{i} - 6\hat{j} + 2\hat{k}$, then find \overrightarrow{AD} and hence find the area of	
21.	parallelogram ABCD.	
	$\stackrel{\text{A}}{\nearrow}$	
Ans	$\overrightarrow{AD} + \overrightarrow{DB} = \overrightarrow{AB}$	
	$\overrightarrow{AD} + \overrightarrow{DD} = \overrightarrow{AD}$ $\overrightarrow{AD} = (2 \hat{\imath} - 4 \hat{\jmath} + 5 \hat{k}) - (3 \hat{\imath} - 6 \hat{\jmath} + 2 \hat{k})$	
	$= -\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$	$\frac{1}{2}$
		2
	$\overrightarrow{AD} \times \overrightarrow{AB} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 2 & 3 \\ 2 & -4 & 5 \end{vmatrix} = 22 \hat{\imath} + 11 \hat{\jmath}$	1
	Area = $ \overrightarrow{AD} \times \overrightarrow{AB} = 22 \hat{i} + 11 \hat{j} $	
	$ A = A \times A = 2 \times A = 4 \times 4 $	$\frac{1}{2}$
22(a).	Check the differentiability of function $f(x) = [x]$ at $x = -3$, where [·]	
	denotes greatest integer function.	
Ans	f(x) = [x] at $x = -3$	
	f(-3+h)-f(-3)	
	RHD = $\lim_{h \to 0} \frac{f(-3+h) - f(-3)}{h}$	
	$-1:m^{-3-(-3)}-0$	$\frac{1}{2}$
	$= \lim_{h \to 0} \frac{-3 - (-3)}{h} = 0$	2
	LHD = $\lim_{h \to 0} \frac{f(-3-h)-f(-3)}{-h}$	
	$\lim_{h\to 0} -\lim_{h\to 0} -h$	
	$= \lim_{h \to 0} \frac{-4 - (-3)}{h} = \lim_{h \to 0} \left(\frac{-1}{h}\right)$	
	$h \rightarrow 0 \qquad h \qquad \qquad \overline{h} \rightarrow 0 \setminus h $	$\frac{1}{2}$
	= not defined	
	∵ LHD ≠ RHD	$\frac{1}{2}$
	· LID 7 KID	
	So f is not differentiable at $x = -3$	$\frac{1}{2}$
	OR	
22(b).	If $x^{1/3} + y^{1/3} = 1$, find $\frac{dy}{dx}$ at the point $\left(\frac{1}{8}, \frac{1}{8}\right)$.	
	dx = (8/8)	
	65 /1/3 8 P.T.O.	<u>. </u>

Ans	$\frac{1}{3} x^{\frac{-2}{3}} + \frac{1}{3} y^{\frac{-2}{3}} \frac{dy}{dx} = 0$	
	$\frac{dy}{dx} = \frac{-x^{\frac{-2}{3}}}{\frac{-2}{y^{\frac{-2}{3}}}}$	$1\frac{1}{2}$
	$\left(\frac{dy}{dx}\right)_{\left(\frac{1}{8},\frac{1}{8}\right)} = \frac{-4}{4} = -1$	$\frac{1}{2}$
23.	Find local maximum value and local minimum value (whichever exists) for the function $f(x) = 4x^2 + \frac{1}{x}(x \neq 0)$.	
Ans	$f(x) = 4 x^2 + \frac{1}{x} (x \neq 0)$	
	$f'(x) = 8x - \frac{1}{x^2} = 0$	$\frac{1}{2}$
	$\Rightarrow x^3 = \frac{1}{8} \Rightarrow x = \frac{1}{2}$	$\frac{1}{2}$
	$f''(x) = 8 + \frac{2}{x^3} > 0$ at $x = \frac{1}{2}$	$\frac{1}{2}$
	$\therefore \text{Local minimum value} = f(\frac{1}{2}) = 3$	$\frac{1}{2}$
		L
24(a).	Find: $\int x \sqrt{1+2x} dx$	
Sol.	$1 + 2x = t^2$ $2 dx = 2t dt$	$\frac{1}{2}$
	$\frac{1}{2}\int (t^4-t^2)dt = \frac{1}{2}\left[\frac{t^5}{5}-\frac{t^3}{3}\right]+C$	
	$=\frac{(1+2x)^{\frac{5}{2}}}{10}-\frac{(1+2x)^{\frac{3}{2}}}{6}+C$	$\frac{1}{2}$
	OR The sales of the sales of th	
24(b).	Evaluate: $\int_0^{\frac{\pi}{4}^2} \frac{\sin \sqrt{x}}{\sqrt{x}} dx$	
Sol.	$\int_0^{\frac{\pi^2}{4}} \frac{\sin \sqrt{x}}{\sqrt{x}} dx \qquad \qquad \text{Put } \sqrt{x} = t \ \Rightarrow \ dx = 2t dt$	1 2
	$2\int_0^{\frac{\pi}{2}} \sin t dt = 2 \left[-\cos t \right]_0^{\frac{\pi}{2}}$	1 1

9

25. If \vec{a} and \vec{b} are two non-zero vectors such that $(\vec{a} + \vec{b}) \perp \vec{a}$ and $(2\vec{a} + \vec{b}) \perp \vec{b}$, then prove that $ \vec{b} = \sqrt{2} \vec{a} $. Sol. $(\vec{a} + \vec{b}) \perp \vec{b}$, then prove that $ \vec{b} = \sqrt{2} \vec{a} $. $(\vec{a} + \vec{b}) \cdot \vec{b} = 0 \Rightarrow \vec{a} ^2 + \vec{b} \cdot \vec{a} = 0$	$\frac{1}{2}$
Sol. $(\vec{a} + \vec{b}). \vec{a} = 0 \Rightarrow \vec{a} ^2 + \vec{b}. \vec{a} = 0 \qquad (1)$ $(2\vec{a} + \vec{b}). \vec{b} = 0 \Rightarrow 2\vec{a}. \vec{b} + \vec{b} ^2 = 0 \qquad (2)$ $2 (\vec{a} ^2) + \vec{b} ^2 = 0 \text{ (Using (1) and (2))}$ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ SECTION-C (Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) 26. Solve the following linear programming problem graphically: Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min $z = 5 \times -2y$ $A(60, 0)$ $B(40, 20)$ $B(40, 20)$ $C(60, 30)$ 240	
Sol. $ (\vec{a} + \vec{b}), \vec{a} = 0 \Rightarrow \vec{a} ^2 + \vec{b}, \vec{a} = 0 \qquad (1) $ $ (2\vec{a} + \vec{b}), \vec{b} = 0 \Rightarrow 2\vec{a}, \vec{b} + \vec{b} ^2 = 0 \qquad (2) $ $ 2 (\vec{a} ^2) + \vec{b} ^2 = 0 \text{ {Using (1) and (2)}} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ SECTION-C (Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) 26. Solve the following linear programming problem graphically: Minimise $z = 5x - 2y$ subject to the constraints $ x + 2y \le 120 $ $ x + y \ge 60 $ $ x - 2y \ge 0 $ $ x, y \ge 0 $ Ans Min $z = 5x - 2y$ $ \vec{a} = 0 \qquad \vec{a} ^2 + \vec{b}, \vec{a} = 0 \qquad (2)$ $ \vec{b} ^2 = 0 \qquad \vec{a} ^2 + \vec{b} ^2 = 0 \qquad (2)$ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} ^2 \Rightarrow \vec$	
$2 (\cdot \vec{a} ^2) + \vec{b} ^2 = 0 \text{ {Using (1) and (2)}}$ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ SECTION-C (Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) 26. Solve the following linear programming problem graphically: Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min $z = 5x - 2y$ $ \vec{a} = 0$ $ \vec{b} = 0$ $ $	1
$2 (\cdot \vec{a} ^2) + \vec{b} ^2 = 0 \text{ {Using (1) and (2)}}$ $ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ SECTION-C (Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) 26. Solve the following linear programming problem graphically: Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min $z = 5x - 2y$ $ \vec{a} = 0$ $ \vec{b} = \sqrt{2} \vec{a} $ $ \vec{b} = \sqrt{2} \vec{a} $ Section-C $ \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} $ $ \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} $ $ \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} $ Section-C $ \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} $ Solve the following linear programming problem graphically: $ \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} $ Solve the following linear programming problem graphically: $ \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} = \sqrt{2} \vec{b} $ Solve the following linear programming problem graphically: $ \vec{b} = \sqrt{2} \vec{b} =$	$ \begin{array}{r} \hline 2 \\ 1 \\ \hline 2 \\ \hline \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ 2 \\ \hline 2 $
$ \vec{b} ^2 = 2 \vec{a} ^2 \Rightarrow \vec{b} = \sqrt{2} \vec{a} $ SECTION-C (Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) 26. Solve the following linear programming problem graphically: Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min $z = 5x - 2y$ $\sqrt{460, 0}$ $\sqrt{60, 0}$	$\frac{\overline{2}}{1}$
SECTION-C (Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) 26. Solve the following linear programming problem graphically: Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min $z = 5 \times -2y$ $\frac{Corner Points}{A(60, 0)} \frac{Z = 5x - 2y}{300}$ $\frac{A(60, 0)}{B(40, 20)} \frac{300}{160}$ $\frac{B(40, 20)}{C(60, 30)} \frac{160}{240}$	$\frac{1}{2}$
Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) 26. Solve the following linear programming problem graphically: Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min $z = 5 \times -2 y$ $\begin{array}{c c} & & \\$	$\frac{1}{2}$
Solve the following linear programming problem graphically : Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans $\min z = 5 \times -2 y$ $Corner Points \qquad Z = 5x - 2y$ $A(60, 0) \qquad 300$ $B(40, 20) \qquad 160$ $C(60, 30) \qquad 240$	1
Minimise $z = 5x - 2y$ subject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans $\min z = 5 \times -2 y$ $\min z = 5 \times -2 y$ $Corner Points \qquad Z = 5x - 2y$ $A(60, 0) \qquad 300$ $B(40, 20) \qquad 160$ $C(60, 30) \qquad 240$	<u> </u>
subject to the constraints $ x + 2y \le 120 $ $ x + y \ge 60 $ $ x - 2y \ge 0 $ $ x, y \ge 0 $ Min $z = 5 \times -2 y $ $ \frac{\text{Corner Points}}{\text{A}(60, 0)} $	
$x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min z = 5 x -2 y $\begin{array}{c cccc} \hline & & & & & & & & & & & & & & & & & & &$	
$x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min z = 5 x -2 y $\begin{array}{c cccc} \hline & & & & & & & & & & & & & & & & & & &$	
$x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ Ans Min z = 5 x -2 y $x + y = 60$ $x + y = 60$ $x - 2y = 0$ $x + y = 60$ $x - 2y = 0$ $x + 2y = 120$ $x - 2y = 10$ $x $	
$x - 2y \ge 0$ $x, y \ge 0$ Ans Min z = 5 x -2 y $x - 2y = 0$ $x - 2y = 0$ $x - 2y = 120$ $x - 2y =$	
Ans Min z = 5 x -2 y $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Ans Min z = 5 x -2 y $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Corner Points $Z = 5x - 2y$ A(60, 0) $300B(40, 20)$ $160C(60, 30)$ 240	
Corner Points $Z = 5x - 2y$ A(60, 0) $300B(40, 20)$ $160C(60, 30)$ 240	
A(60, 0) 300 B(40, 20) 160 C(60, 30) 240	Corregraph $1\frac{1}{2}$
B(40, 20) 160 C(60, 30) 240	Corre
C(60, 30) 240	table
	1
D(120, 0) 600	
	$\frac{1}{2}$

65 /1/3 10 P.T.O.

E and F are two independent events such that $P(\overline{E}) = 0.6$ and	
$P(E \cup F) = 0.6$. Find $P(F)$ and $P(\overline{E} \cup \overline{F})$.	
$P(\overline{E}) = 0.6 \Rightarrow P(E) = 0.4$	1
$P(E \cup F) = P(E) + P(F) - P(E \cap F)$	2 1
$\Rightarrow 0.6 = 0.4 + P(F) - 0.4 P(F) \Rightarrow P(F) = \frac{1}{3}$	<u>7</u> 1
$P(\overline{E} \cup \overline{F}) = 1 - P(E \cap F)$	1 2 1 2 1 1 2 1
$=1-0.4\times\frac{1}{3}=\frac{13}{15}$	$\frac{1}{2}$
A relation R on set $A = \{1, 2, 3, 4, 5\}$ is defined as	_
$R = \{(x,y): \ \ x^2 - y^2 \ \ < 8 \}. \ Check \ whether \ the \ relation \ R \ is \ reflexive,$	
symmetric and transitive.	
(a) Reflexive:	_
•	$\frac{1}{2}$
·	2
Hence R is symmetric.	1
(c) Transitive:	
· · · · · · · · · · · · · · · · · · ·	
	$1\frac{1}{2}$
THERE A IS NOT TRAINED.	2
OR	
A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$	
and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is	
one-one and onto or not.	
f(x) = ax + b	
	1
$2 x_1 - 1 = 2 x_2 - 1 \Rightarrow x_1 = x_2$	
Hence f is one – one.	1
4	
$\boldsymbol{\mathcal{L}}$	
	1
If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.	
	$P(E) = 0.6 \Rightarrow P(E) = 0.4$ $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ $\Rightarrow 0.6 = 0.4 + P(F) \cdot 0.4 P(F) \Rightarrow P(F) = \frac{1}{3}$ $P(E \cup F) = 1 - P(E \cap F)$ $= 1 - 0.4 \times \frac{1}{3} = \frac{13}{15}$ A relation R on set A = $\{1, 2, 3, 4, 5\}$ is defined as $R = \{(x, y) : x^2 - y^2 < 8\}$. Check whether the relation R is reflexive, symmetric and transitive. (a) Reflexive: $\therefore x^2 - x^2 < 8 \forall x \in A \Rightarrow (x, x) \in R \therefore R \text{ is reflexive }.$ (b) Symmetric: Let $(x, y) \in R$ for some $x, y \in A$ $\therefore x^2 - y^2 < 8 \Rightarrow y^2 - x^2 < 8 \Rightarrow (y, x) \in R$ Hence R is symmetric. (c) Transitive: (1,2), (2,3) $\in R$ as $ 1^2 - 2^2 < 8$, $ 2^2 - 3^2 < 8$ respectively But $ 1^2 - 3^2 < 8 \Rightarrow (1,3) \notin R$ Hence R is not transitive. OR A function f is defined from $R \rightarrow R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is one-one and onto or not. $f(x) = ax + b$ Solving $a + b = 1$ and $2a + b = 3$ to get $a = 2$, $b = -1$ $f(x) = 2x - 1$ Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$ $2x_1 - 1 = 2x_2 - 1 \Rightarrow x_1 = x_2$

65 /1/3 11 P.T.O.

Ans	$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$	
7 1113	$ \begin{aligned} \sqrt{1 - x^2} + \sqrt{1 - y^2} &= a(x - y) \\ \text{Put } x &= \sin \theta , y &= \sin \phi \end{aligned} $	1
	$\Rightarrow \cos \theta + \cos \phi = a (\sin \theta - \sin \phi)$	$\frac{1}{2}$
	$\Rightarrow 2\cos\left(\frac{\theta+\phi}{2}\right)\cos\left(\frac{\theta-\phi}{2}\right) = 2 \operatorname{a}\sin\left(\frac{\theta-\phi}{2}\right)\cos\left(\frac{\theta+\phi}{2}\right)$	1
	$\Rightarrow \cot\left(\frac{\theta - \phi}{2}\right) = a$	$\frac{1}{2}$
	$\Rightarrow \theta - \phi = 2 \cot^{-1} \alpha$	
	$\Rightarrow \theta - \psi - 2 \cot^{-1} \alpha$ $\Rightarrow \sin^{-1} x - \sin^{-1} y = 2 \cot^{-1} \alpha$	1
	$\Rightarrow \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$	$\frac{1}{2}$
	$\sqrt{1-x^2} \qquad \sqrt{1-y^2} \ dx$	1
	$\frac{1}{2}$	
	$\Rightarrow \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$	$\frac{1}{2}$
	OR	
29(b).	If $y = (\tan x)^x$, then find $\frac{dy}{dx}$.	
Ans	$y = (\tan x)^x$	
	$\log y = x \log (\tan x)$	$\frac{1}{2}$
		2
	$\frac{1}{y}\frac{dy}{dx} = x\left(\frac{\sec^2 x}{\tan x}\right) + \log(\tan x)$	2
	$\frac{dy}{dx} = (\tan x)^x \left[\left(\frac{x \sec^2 x}{\tan x} \right) + \log(\tan x) \right]$	
	$dx = \left[\left(\tan x \right) \cdot \log \left(\tan x \right) \right]$	$\frac{1}{2}$
		_
30(a).	Find:	
	$\int \frac{x^2}{(x^2+4)(x^2+9)} dx$	
	$J(x^2+4)(x^2+9)$	
Sol.	Let $I = \int \frac{x^2}{(x^2+4)(x^2+9)} dx$	
		$\frac{1}{2}$
	Put $x^2 = t$	
	$\frac{t}{(t+4)(t+9)} = \frac{A}{t+4} + \frac{B}{t+9} \Rightarrow A = \frac{-4}{5}, B = \frac{9}{5}$	
		1
	$I = \frac{-4}{5} \int \frac{1}{2^2 + x^2} dx + \frac{9}{5} \int \frac{1}{3^2 + x^2} dx$	$1\frac{1}{2}$
	$= \frac{-2}{5} \tan^{-1} \left(\frac{x}{2} \right) + \frac{3}{5} \tan^{-1} \left(\frac{x}{3} \right) + C$	1
	OR	
	Evaluate :	
30(b).	$\int_{1}^{3} (x-1 + x-2 + x-3) dx$	
Ans	$\int_{1}^{3} (x-1 + x-2 + x-3) dx$	
	$= \int_{1}^{3} (x-1)dx + \int_{1}^{2} -(x-2)dx + \int_{2}^{3} (x-2)dx - \int_{1}^{3} (x-3)dx$	$1\frac{1}{2}$
	11 × 7 × 11 × -7 × 12 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × 11 × -7 × -7	

12

	$= \int_1^3 2 \ dx + \int_1^2 (2-x) \ dx + \int_2^3 (x-2) dx$	
	$= [2x]_1^3 + \left[\frac{(2-x)^2}{-2}\right]_1^2 + \left[\frac{(x-2)^2}{2}\right]_2^3$	_
	$=4+\frac{1}{2}+\frac{1}{2}=5$	$1\frac{1}{2}$
21		
31.	Solve the following differential equation:	
	$(\tan^{-1} y - x) dy = (1 + y^2) dx$	
Sol.	$(\tan^{-1} y - x) dy = (1 + y^2) dx$	
	$\frac{dx}{dy} + \frac{1}{1+y^2} x = \frac{\tan^{-1} y}{1+y^2}$	1
	I. $F = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$	$\frac{1}{2}$
	$\tan^{-1}y$ $\int \tan^{-1}y$ $\tan^{-1}y$ d	1
	$x \times e^{\tan^{-1} y} = \int \frac{\tan^{-1} y}{1 + y^2} e^{\tan^{-1} y} dy$	1
	$\Rightarrow xe^{\tan^{-1}y} = (\tan^{-1}y) e^{\tan^{-1}y} - e^{\tan^{-1}y} + C$	$\frac{1}{2}$
	OR	
	$\Rightarrow x = \tan^{-1} y - 1 + C e^{-\tan^{-1} y}$	
	SECTION-D	
	(Question nos. 32 to 35 are Long Answer type questions carrying 5 marks each)	
32.	Find the equation of a line l_2 which is the mirror image of the line l_1 with	
	respect to line $l: \frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$, given that line l_1 passes through the	
	point $P(1, 6, 3)$ and parallel to line l .	
Sol.	D ratios of the line l i.e. $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ are 1, 2, 3	$\frac{1}{2}$
	Let coordinates of foot of perpendicular M on line l be $(\lambda, 2\lambda + 1, 3\lambda + 2)$	$\frac{1}{2}$
	D.ratios of PM are $\lambda - 1, 2\lambda - 5, 3\lambda - 1$	$\frac{1}{2}$
	$1(\lambda - 1) + 2(2\lambda - 5) + 3(3\lambda - 1) = 0 (: PM \perp l)$	$\frac{1}{2}$
	$\Rightarrow \lambda = 1$	$\frac{1}{2}$
	Coordinates of M are $(1, 3, 5)$ l_2	1
	Since M is midpoint of PQ \therefore Coordinates of Q are $(1, 0, 7)$	1
	65 /1/3 13 P.T.O.	

	Equation of line l_2 is $\frac{x-1}{1} = \frac{y}{2} = \frac{z-7}{3}$	1
		$\frac{1}{2}$
22()		
33(a).	If $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \end{bmatrix}$, find A^{-1} and use it to solve the following	
	$\begin{bmatrix} 2 & 2 & 2 \\ 0 & -2 & 1 \end{bmatrix}$, that is that as it is solve the least tag.	
	system of equations :	
	x - 2y = 10, 2x - y - z = 8, -2y + z = 7	
Ans	$ A = 1 \neq 0 \text{ hence } A^{-1} \text{ exists.}$	1
	$Adj A = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix}$	2
		1
	$A^{-1} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix}$	$\frac{1}{2}$
	$AX = B \Rightarrow \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$	
	$X = A^{-1}B \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ -3 \end{bmatrix}$	$1\frac{1}{2}$
	$\begin{bmatrix} X - A & B \rightarrow \begin{bmatrix} y \\ z \end{bmatrix} - \begin{bmatrix} -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 6 & 7 & -5 \\ 7 & -3 \end{bmatrix}$	2
	$\Rightarrow x = 0, y = -5, z = -3$	
	OR	
33(b).	[-1 a 2] [1 -1 1]	
	If $A = \begin{bmatrix} -1 & a & 2 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix}$,	
	find the value of $(a + x) - (b + y)$.	
Ans	$AA^{-1} = I$	1
	$\begin{bmatrix} -1 & a & 2 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} -1 - 8a + 2b & 1 + 7a + 2y & 5 - 5a \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	$1\frac{1}{2}$
	$\begin{bmatrix} -1 - 8a + 2b & 1 + 7a + 2y & 5 - 5a \\ -15 + bx & 13 + xy & 3x - 9 \\ -5 + b & 4 + y & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\frac{1}{2}$
	$-5 + b = 0 \Rightarrow b = 5$, $5 - 5a = 0 \Rightarrow a = 1$	1
	$4 + y = 0 \Rightarrow y = -4$, $3x - 9 = 0 \Rightarrow x = 3$	1
	$\therefore (a + x) - (b + y) = (1 + 3) - (5 - 4) = 3$	
	$ \cdot\cdot\cdot(a+x)-(b+y)-(1+3)-(b-4)-3 $	$\frac{1}{2}$

14

	Ta' 1	
34(a).	Find:	
	$\int \frac{(3\cos x - 2)\sin x}{5 - \sin^2 x - 4\cos x} dx$	
	$\int 5 - \sin^2 x - 4 \cos x$	
Ans	$\int \frac{(3\cos x - 2)\sin x}{5 - \sin^2 x - 4\cos x} dx , \qquad \text{Put } \cos x = \text{t so that, } -\sin x dx = \text{dt}$	$\frac{1}{2}$
	$= \int \frac{2-3t}{5-(1-t^2)-4t} dt$	
	$=\int \frac{2-3t}{(t-2)^2} dt$	1
	$\int \frac{2-3t}{(t-2)^2} dt = -3 \int \frac{1}{t-2} dt - 4 \int \frac{1}{(t-2)^2} dt$	1
	$= -3\log t - 2 - 4\left(\frac{-1}{t - 2}\right) + C$	2
	$= -3\log \cos x - 2 + \frac{4}{\cos x - 2} + C$	$\frac{1}{2}$
	OR .	
2123	Evaluate:	
34(b).		
	$\int_{-2}^{2} \frac{x^3 + x + 1}{x^2 + 4 x + 4} dx$	
	$\int_{-2}^{3} x^{2} + 4 x + 4$	
Ans	$I = \int_{-2}^{2} \frac{x^3 + x + 1}{x^2 + 4 x + 4} dx$	
	דון אן גיד - א	

P.T.O.

	$= \int_{-2}^{2} \frac{x^{3}}{x^{2}+4 x +4} dx + \int_{-2}^{2} \frac{ x +1}{x^{2}+4 x +4} dx$	1
	$=I_1+I_2(say)(1)$	
	$I_1 = 0 \ (\because \frac{x^3}{x^2 + 4 x + 4} \ is \ an \ odd \ function)$	1
	$I_2 = 2 \int_0^2 \frac{x+1}{x^2+4x+4} dx \left(\because \frac{ x +1}{x^2+4 x +4} \text{ is an even function.} \right)$	1
	$=2\int_0^2 \frac{x+1}{(x+2)^2} \ dx$	
	Put $x + 2 = t$, so that $dx = dt$	4
	$=2\int_{2}^{4}\frac{t-1}{t^{2}}\ dt$	$\frac{1}{2}$
	$=2\left[\int_2^4\left(\frac{1}{t}-\frac{1}{t^2}\right)dt\right]$	
	$=2\left[\log t +\frac{1}{t}\right]_2^4$	1
	$= 2 \left[\log 4 + \frac{1}{4} - \log 2 - \frac{1}{2} \right]$	
	$=2\log 2-\frac{1}{2}$	$\frac{1}{2}$
35.	2 2	
33.	Using integration, find the area of the ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$, included	
- C 1	between the lines $x = -2$ and $x = 2$.	
Sol.	41 Y	Correct
	x x 5 5	graph -1
	$Area = 4 \int_0^2 y dx$	1
	$=4\left[\frac{1}{2}\int_{0}^{2}\sqrt{4^{2}-x^{2}}dx\right]$	1
	$=2\left[\frac{x}{2}\sqrt{4^2-x^2}+8\sin^{-1}(\frac{x}{4})\right]_0^2$	2
	$= 2\left[\sqrt{12} + \frac{8\pi}{6}\right] = 4\sqrt{3} + \frac{8\pi}{3}$	1

P.T.O.

65 /1/3

SECTION-E (Question nos. 36 to 38 are source based/case based/passage based/integrated units of assessment questions carrying 4 marks each) 38. If a function $f: X \to Y$ defined as f(x) = y is one-one and onto, then we can define a unique function $g: Y \to X$ such that g(y) = x, where $x \in X$ and y = f(x), $y \in Y$. Function $g: X \to X$ such that g(y) = x, where $x \in X$ and y = f(x), $y \in Y$. Function $g: X \to X$ is neither one-one nor onto. The following graph shows the sine function. 1. The domain of sine function is $X \to X$ is neither one-one nor onto. The following graph shows the sine function. 2. The following graph shows the sine function. 2. The following graph shows the sine function. 3. The following graph shows the sine function. 3. Let sine function be defined from set $X \to X$ to $X \to X$ to

(ii) If $\sin^{-1}(x)$ is defined from [-1, 1] to its principal value branch, find the value of $\sin^{-1}\left(-\frac{1}{2}\right) - \sin^{-1}(1)$.

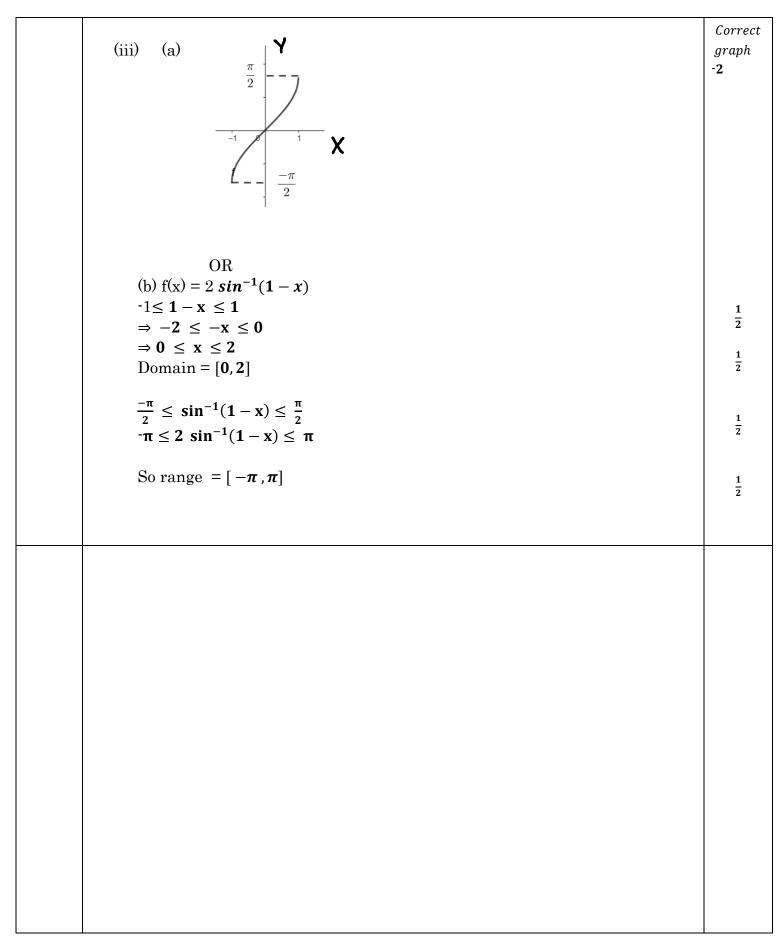
(iii) (a) Draw the graph of sin⁻¹ x from [-1, 1] to its principal value branch.

OR

 $(iii) \hspace{0.5cm} (b) \hspace{0.5cm} \text{Find the domain and range of } f(x) = 2 \sin^{-1}{(1-x)}.$

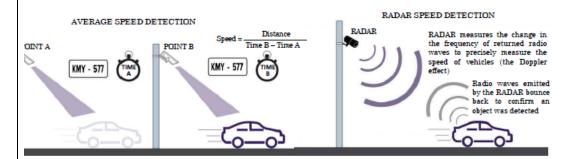
(i) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ or any other interval corresponding to the domain [-1,1]

2


(ii) $\sin^{-1}\left(\frac{-1}{2}\right) - \sin^{-1}(1)$ = $\frac{-\pi}{6} - \frac{\pi}{2}$ = $\frac{-4\pi}{6}$ or $\frac{-2\pi}{3}$

Ans

65 /1/3 17 P.T.O.



1

65 /1/3 18 P.T.O.

The traffic police has installed Over Speed Violation Detection (OSVD) system at various locations in a city. These cameras can capture a speeding vehicle from a distance of 300 m and even function in the dark.

A camera is installed on a pole at the height of 5 m. It detects a car travelling away from the pole at the speed of 20 m/s. At any point, x m away from the base of the pole, the angle of elevation of the speed camera from the car C is θ .

On the basis of the above information, answer the following questions :

(i) Express θ in terms of height of the camera installed on the pole and x.

 $(ii) \quad \ \ Find \ \frac{d\theta}{dx}.$

1

 2

1

(iii) (a) Find the rate of change of angle of elevation with respect to time at an instant when the car is 50 m away from the pole.

OR

(iii) (b) If the rate of change of angle of elevation with respect to time of another car at a distance of 50 m from the base of the pole is $\frac{3}{101}$ rad/s, then find the speed of the car.

Ans

(i)
$$\tan \theta = \frac{5}{x} \Rightarrow \theta = \tan^{-1}(\frac{5}{x})$$

1

(ii)
$$\frac{d\theta}{dx} = \frac{-5}{5^2 + x^2}$$

 $1\frac{1}{2}$

1

ii)
$$(a) \frac{d\theta}{dt} = \frac{d\theta}{dx} \times \frac{dx}{dt} = \frac{-5}{5^2 + x^2} \times 20 \Big]_{x=50}$$
$$= \frac{-100}{2525} \text{ or } \frac{-4}{101} \ rad/s$$

2

(b)
$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \times \frac{dx}{dt} \Rightarrow \frac{3}{101} = \frac{-5}{5^2 + x^2} \Big|_{x=50} \times \frac{dx}{dt}$$

 $1\frac{1}{2}$

65 /1/3

19

	$\Rightarrow \frac{3}{101} = \frac{-5}{2525} \times \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = -15 m/s$	$\frac{1}{2}$
	Hence the speed is 15 m/s	
38.	According to recent research, air turbulence has increased in various regions around the world due to climate change. Turbulence makes flights bumpy and often delays the flights. Assume that, an airplane observes severe turbulence, moderate turbulence or light turbulence with equal probabilities. Further, the chance of an airplane reaching late to the destination are 55%, 37% and 17% due to severe, moderate and light turbulence respectively.	
	Turbulence intensity Severe Light ± 1 meter ± 5 meters ± 30 meters	
	On the basis of the above information, answer the following questions: (i) Find the probability that an airplane reached its destination late. (ii) If the airplane reached its destination late, find the probability that it was due to moderate turbulence. 2	
Sol.	(i) Let A denote the event of airplane reaching its destination late	
	E_1 = severe turbulence E_2 = moderate turbulence	$\left.\right\}^{\frac{1}{2}}$
	E_3 = light turbulence	
	$P(A) = P(E_1) P(A E_1) + P(E_2)P(A E_2) + P(E_3)P(A E_3)$	
	$= \frac{1}{3} \times \frac{55}{100} + \frac{1}{3} \times \frac{37}{100} + \frac{1}{3} \times \frac{17}{100}$	1
	$=\frac{1}{3}\left(\frac{109}{100}\right) = \frac{109}{300}$	$\frac{1}{2}$
	(ii) $P(E_2 A) = \frac{P(E_2)P(A E_2)}{P(A)}$	
	$=\frac{\frac{1}{3}\times\frac{37}{100}}{\frac{109}{300}}$	$1\frac{1}{2}$
	$=\frac{37}{109}$	$\frac{1}{2}$

65 /1/3 20 P.T.O.

